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 Abstract . A typical task in chemometrics is to estimate the linear relationship between two 
sets of variables, i.e. the set of spectra, X, and the concentrations of some sample constituents, Y. 
Among the classical regression methods, partial least squares (PLS) is one of the most commonly 
used tools. One of the complications which could negatively affect the interpretation of the PLS 
model is related to the systematic variation present in X that is unrelated with the variation in Y. 
This situation typically occurs when X variables represent the absorbance or reflectance measured at 
hundreds of wavelengths, and the measurements are possibly influenced by sources of different 
types of variation having nothing in common with the information of interest. Orthogonal signal 
correction (OSC) is a recently proposed pre-processing method that seems to be promising in this 
context. This approach determines and removes from spectral data X the part of information which 
is Y-orthogonal (i.e. not correlated with Y). The purpose of the present paper is to illustrate how the 
technique works in application to near infrared (NIR) spectra of rapeseed meal. The results of PLS 
modelling for OSC pre-processed data have been compared with those of non-pre-processed as well 
as with those after multiplicative scatter correction (MSC). The main noticeable advantage of the 
OSC approach was the simplification of the calculated PLS models. It was also found that the 
combination of MSC with OSC may lead to improved performance of the model. 
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INTRODUCTION 

 Near Infrared Spectroscopy (NIRS), along with multivariate calibration, are 
being increasingly used to infer properties of the analytes in samples. The aim is 
to build a calibration equation to predict analytes contents from spectra for future 
samples, using some of known regression methods. Pre-processing the data before 
the calibration is often the first step employed in order to reduce the effects which are 
not related to the parameters of interest. For NIR spectra of granular samples, 
scattering of radiation and differences in spectroscopic path length, caused by particle 
size distribution, often constitute the major part of the variation. Thus, signal 
correction of NIR spectra is a quite wide topic of investigation that includes different 
approaches developed to do this. Commonly used are multiplicative signal correction 
(MSC) [3,5,11], standard normal variate (SNV) [3,11], first and further derivative 
filtering, Fourier transformation, the Savitzky-Golay smoothing filtering [12,13]. 
 It should be noted that it has been difficult to develop a signal correction 
method to improve the calibration model in general. Therefore, from the 
viewpoint of a given modelling task, it is desirable to try different variants of data 
correction and a few regression methods for a best variant of the model to be 
selected.. The pre-treatment methods mentioned above may be applied to data for 
which there are no reference measurements. When reference values exist, they 
can be used to help the choice of the pre-treatment way, so that only a minimum 
of relevant information included in the spectra can be removed. The orthogonal 
signal correction (OSC), proposed by Wold et al. [18], is a relatively new 
technique which separates strong structured (i.e. systematic) variation in X-matrix 
that is not correlated to the response Y-vector or matrix. To date, several 
algorithms for OSC as a filtering procedure to the data have been discussed 
[2,4,14-17]. In this paper Trygg and Wold’s proposal [15] will be used for pre-
processing the spectra matrix. 
 The OSC method is usually used together with a regression method, such as 
partial lest squares (PLS) or principal component regression (PCR), to build the 
calibration model. In this report we will compare the predictive abilities of regular 
PLS regression models for original data and when the data have been pre-treated 
with MSC and OSC methods. 

MATERIAL AND METHODS 

 In this study the set of data consisted of NIR spectra coming from 69 samples 
of rapeseed meal. Reference methods determined the concentration of five 
constituents: dry mass, protein, oil, ash and fibre. (For more details see accom-
panying paper by Jankowski et al. [7]). 
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 PLS has been found to be the most popular regression method for multivariate 
data. The theoretical basis for PLS has been widely described in literature and can 
be found for example in Refs. [6,9,11]. PLS tries to find a relationship between the 
latent structure in spectra set, X, and the latent structure in responses, Y. It is carried 
out by finding specific directions in data space, the so-called latent variables, and 
determining some new vectors called loadings and scores. Two groups of loadings 
and scores are under investigation; one group for the X matrix – they are commonly 
called loadings P and scores T, and another group for Y matrix, denoted Q and U, 
respectively. Loadings give information about the relationship between the original 
variables directions and the latent variables directions in data space. Scores are the 
projections of the samples (meant as points in variable data space) on the latent 
variables directions. Each score vector has a corresponding loading vector. The 
objective of PLS is to maximize covariance between the first PLS score vector of 
the data X and the score vector of the responses, Y. To do this one estimates the 
PLS weights (W) for X, and then calculates the scores blocks for X and Y. The 
same is then performed for subsequent scores vectors. 
 In practical use of modelling by latent variables methods, such as PLS, first of 
all the number of significant latent variables (components) has to be determined 
for each calibration model. The cross-validation approach provides a very reliable 
way for this [19]. Validation means a model testing on a data set that has not been 
used in the development of the model. In cross-validation, the same parts of the 
data are used in two different roles - once in model making, once in model testing. 
A number of alternations is performed accordingly to some permutations schemes 
and then the root mean square error of cross-validation (RMSECV) for all models 
with different dimensions is calculated. It is commonly accepted that the number 
of PLS components giving a minimum RMSECV is the proper number for the 
model that gives optimal prediction. Additionally, regression diagnostic is often 
based on other statistical parameters used in such analysis; first of all on the 
coefficient of multiple determination (R2). (For more complete review the reader 
is referred to Ref. [1]). Besides, the proper number of PLS components can be 
inferred based on the analysis of cumulative variance explained in X and Y block 
matrices. From the viewpoint of modelling efficiency, these variances in the first 
few components should be as large as possible to provide the satisfactory model. 
In some situations, the PLS model captures a very large amount of X-variance in 
the first component and only a low variance on the predicted Y-value. When more 
components are calculated, the model improves slowly, and finally it is too  
complicated. In these cases applying OSC could be helpful. The main goal of OSC is 
to capture Y-orthogonal variation in X within a limited number of orthogonal scores 
(Tort) and loadings (Port). Filtered data are obtained after iterative removal of the 
first 2-3 (usually) orthogonal components, as follows 
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∑ ⋅−= T
orthoorthoOSC PTXX     (1) 

The suggested number of orthogonal components is generic. There exists a viable 
risk of overfitting the estimated model if too many OSC components are removed. 
This is the first problem encountered with OSC application, being a simple cones-
quence of inaccurate predictor values and thereby removing some relevant, 
systematic variation in X and leaving only weakly correlated information for the 
final calibrations. Trygg and Wold [15] introduce two alternative plots as good 
indicative measures of the correct number of orthogonal components to extract. 
Such plots will be described further on in this paper. 

Different variants of OSC differ in the way they estimate the orthogonal scores 
and therefore do not give a unique solution. It is common practice to apply 
principal component analysis (PCA) in order to calculate the orthogonal scores 
[8]. PCA is a basic tool in analysis of multivariate data matrix X (see e.g. Refs [9-
11]). The aim of this method is to decompose X into a limited number of scores 
(T) and loadings (P) vectors, plus a residual matrix (E) 

∑ +⋅= EPTX T     (2) 

In PCA, the loadings and scores have the same meaning as in PLS but the so-
called principal components are used instead of latent variables. 

The original approach presented by Wold et al. [18] uses the first score vector 
of X matrix calculated by PCA as a starting score vector orthogonal to Y, Tort. 
This vector is then orthogonalized to Y in iterative way until convergence is 
reached. In each iteration, a PLS model is calculated to estimate weights, Wort , 
and to make product X·Wort as close to Tort as possible. When a suitable Y-
orthogonal Tort is found, a loading vector, Port, is calculated. The OSC corrected 
matrix is then found according to expression (1). For additional orthogonal 
components the correction is performed by repeating the steps as below. 

The approach proposed by Trygg and Wold [15] first seeks for a matrix Wort, 
whose columns in the initial stage are loading weights of the regular PLS model. 
Next, the suitable vector of weights, Wort, is calculated and the score vector 
orthogonal to Y, Tort, corresponding to these weights, accounts for as much variability 
in X as possible. The resulting vectors are then used in the same way as described 
above. This variant of OSC is focused solely on model simplification and impro-
vement of interpretation, which is done by removing only this part of irrelevant 
variation that creates problems for the PLS model. Moreover, as a rule, the total 
number of the final PLS components is reduced by the number of OSC components. 



ORTHOGONAL SIGNAL CORRECTION TO PLS MODELLING 

 

 

11

RESULTS 

 Three modified spectra sets have been prepared for the purpose of modelling 
in addition to the original data set of rapeseed meal spectra. The first of the 
modified sets consists of MSC pre-processed spectra. The second one consists of 
OSC corrected spectra and the last one was obtained using OSC followed by MSC 
(MSC+OSC). In all cases mean centring has been used prior to data modelling. 

To test the performance of the OSC pre-processing, the PLS modelling has been 
made for all prepared data sets. Table 1 shows the percentage of cumulative 
variance captured by models for spectra, X, and oil as predicted variable Y. Bold 
figures in the Table help to follow how particular methods for pre-processing of 
the data influence the cumulative variance in Y space. It can be seen that for 
original data the model with only one PLS component accounts for a very low 
percentage of Y-variance. MSC pre-processing improves the model, but still less 
than 20% of the variance is explained. The OSC method, after removing one 
orthogonal component for this data set, gives calibration model with substantially 
better predictive ability. Note that the PLS model built on MSC+OSC corrected 
data captures the largest amount of Y variance in the first PLS component. 
 
Table1.  Percentage of cumulative variance captured by PLS model for X and Y data space, where Y is 
oil content, when different pre-processing methods are used. Bold figures are explained in the text 

 

Original  MSC  OSC  MSC + OSC  Latent 

variable X Y X Y X Y X Y 

1 92.3 3.1 82.3 17.7 77.8 32.2 65.8 70.9 

2 99.0 32.2 90.9 70.9 94.5 54.8 84.8 95.4 

3 99.8 54.8 96.0 95.4 97.6 90.0 93.4 97.7 

4 99.9 90.9 98.3 97.7 98.7 96.2 96.7 98.1 

 
Figure 1 depicts the calculated RMSECV values versus the number of PLS com-
ponents obtained for spectra sets prepared with all the procedures, when oil 
content is predicted. It can be seen that for the original data the significant PLS 
model requires 13 components. After applying MSC, the number decreases to 12. 

Application of only the OSC method prior to PLS modelling when 3 orthogonal 
components are being removed yields 10 components. It is, however, worth 
noting that the resulting number of the final PLS components is reduced by 3, 
which is the number of significant orthogonal components. As it can be seen from 
Figure1, the simplest model was obtained when orthogonal components were 
calculated for MSC pre-processed spectra and then removed from spectral data 
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(MSC+OSC approach). The solution given by MSC+OSC pre-processing is 
advantageous over the OSC transformation in two aspects. First, the model 
simplification is gained, second - the lowering of RMSECV values, clearly visible 
in Figure 1, results in better prediction ability of such models. 
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Fig. 1.  RMSECV values of oil prediction using PLS model with 1-15 components after different 
approaches of the pre-processing have been applied  

 The number of three orthogonal components for modelling of oil content 
results from Figure 2. This plot, suggested by Trygg and Wold [15], shows the 
ratio P/Wort versus the number of orthogonal components. This ratio becomes 
close to zero if no orthogonal information remains in X matrix. Hence, the index 
of the last orthogonal component before the plot flattens is assumed to be suitable. 
It can be seen from Figure 2 that it happens for three orthogonal components. 
 Alternatively, the authors propose to follow the relation between X and Y by 
looking at graphs of the Y scores, U, against the X scores, T, after removing every 
orthogonal component. These graphs, the so-called t-u score plots, exemplify the 
enhancement of correlation in the first PLS component after removing from X the 
part of information that is not correlated with Y. The correct number of orthogonal 
components is assumed to be found when the pattern of the set of the points became 
linear. Such diagnostic plots are shown in Figure 3. It can be seen that if only one 
orthogonal component is removed the plot does not show much correlation, while 
removal of three orthogonal components makes the dependence clearly linear. 
The removal of four OSC components makes no noticeable improvement. 
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Fig. 2. Plot of the ratio P/Wortho
versus the number of orthogonal components. Three significant 

components are indicated to be removed 
 
 
In a similar way the analyses for the remaining constituents have been made. The 
numbers of significant PLS components determined from cross-validation are 
listed in Table 2. MSC and OSC correction methods show quite similar ability in 
model simplification. It should be noticed that for ash and fibre one can observe a 
substantial simplification of the calibration models when MSC+OSC approach is 
applied. The correct number of orthogonal components were obtained based on 
the ratio P/Wortho

 plot and t-u score plots, as illustrated earlier for oil 

constituent. Since Trygg and Wold’s [15] OSC approach is intended to simplify 
the model, only the numbers of orthogonal components to be removed in each 
case can be inferred directly from Table 2 by comparing the values of PLS 
components for original data with those for OSC pre-processed data or by 
comparing the values of PLS components for MSC pre-processed data with those 
obtained when MSC+OSC pre-processing was applied. 
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Fig. 3. t-u score plots for the first PLS component after  progressive removal of 1,2,3 and 
4 orthogonal components from MSC pre-processed spectral data for modelling of oil content 
 
Table 2. Numbers of significant PLS components determined from minimum of RMSECV for 
models of each constituent 
 

   Component Original MSC OSC MSC+OSC 

Dry mass 12 10 10 9 

Protein 5 5 2 3 

Oil 13 12 10 9 

Ash 18 10 15 8 

Fibre 9 6 6 4 

 
Once the optimum numbers of the PLS components had been estimated, the 

regular PLS calibrations with the determination of the statistical parameters were 
made. The predictive ability of the calibration was estimated in terms of the 
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RMSECV (as low as possible) and the R2 (as high as possible) obtained from 
cross-validation. Figure 4 shows the RMSECV and R2 values for all analysed 
constituents after different approaches of pre-processing have been applied. 
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Fig. 4. The RMSECV and R2 values for all calculated models  
 

It can be seen that the best models 
for all constituents, except ash, were 
obtained from spectra pre-treated 
with MSC as well as when MSC 
was combined with OSC 
(MSC+OSC). This result is not 
surprising since OSC algorithm, in 
Trygg and Wold’s variant, is focused 
solely on the PLS model 
simplification and therefore the 
estimated parameters are finally 
equivalent to those obtained by 
MSC. The only diffe-rence is the 

number of PLS com-ponents to be used. For ash, the modelling by PLS gives 
quite different results. The only method providing the most favourable parameters 
and the most simple model is OSC. In this case OSC transformation seems to 
work more efficiently if it is carried out on the original data. Moreover, if to follow 
R2 value it can be concluded that PLS regression for this constituent has some 
prediction problem because only less than 70% of the variance of the response 
variable Y is explained by the regression relationship. This can be more directly seen 
from Figure 5, where rather weak correlation between predicted and measured 
values exists. 
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Fig. 5. The predicted versus measured (referenced) 
values for ash content 
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DISCUSSION AND CONCLUSIONS 

 In this paper we have illustrated on NIR rapeseed meal data set how the 
orthogonal signal correction of the spectra applied prior to multivariate calibration 
improved the effectiveness of PLS method. The use of a conventional correction 
method such as MSC does not require reference values as OSC does, but the use 
of reference values allows to focus the pre-treatment of the data by orthogonal 
correction on modelling the Y values. In practice this idea can encounter some 
problems, because neither accuracy nor precision of the reference measurements 
are examined. Beside, overfitting of the estimated models is likely to be achieved 
when too many orthogonal components are removed. 
 In the literature, the OSC has become an alternative, independent prepro-
cessing method which determines and removes from spectral data X the part of 
information which is not correlated with Y. However, MSC reduces the additive 
and multiplicative effects on individual spectra which come from different sample 
granulations. This information is not simply related with Y, but with optical 
phenomena accompanying the scattering of light. Thus, OSC as well as MSC may 
give more or less similar results. How much the results are similar depends on the 
case. For the data under investigation, the calibration models displayed a viable 
improvement if OSC approach was combined with MSC pre-processing. However, in 
one case (for ash), the conventional approach that uses only OSC pre-processing 
appeared to be more efficient, although not satisfactory results have been 
obtained. This is probably due to various reasons, like low range of the referenced 
ash values in the investigated data. 
 Finally, one can conclude that the proposed OSC pre-processing offers the 
advantage of at least simplification of the PLS model, and in some cases 
combination with MSC may lead to improved performance of the model. In 
general, it is difficult to predict in advance the consequences for calibration task 
of applying the combined approach (MSC+OSC). Which approach is to be 
recommended – OSC or MSC+OSC - depends both upon the data and the 
constituent to be analysed. Further investigations with other data are required to 
determine the actual merit of the combined MSC and OSC pre-processing. 
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Streszczenie. Typowym zadaniem w chemometrii jest oszacowanie liniowej zaleŜności 
pomiędzy dwoma zbiorami zmiennych: zbiorem widm, X, i zbiorem koncentracji pewnych skład-
ników, Y. Jedną z najpowszechniej stosowanych metod regresji jest metoda częściowych naj-
mniejszych kwadratów (partial least squares – PLS). Systematyczne zmiany obecne w X, nie 
skorelowane ze zmianami w Y, mogą wpływać negatywnie na interpretację modelu PLS. Taka 
sytuacja moŜe wystąpić w przypadku, gdy zmienne X reprezentują wartości absorbancji lub 
reflektancji mierzone dla bardzo wielu (setek) długości fal, a pomiary są np. obarczone zabu-
rzeniami pochodzącymi z róŜnych źródeł, nie mających związku z interesującą nas informacją. 
W takim przypadku, zaproponowana ostatnio metoda ortogonalnej korekcji sygnału (OSC) moŜe 
okazać się pomocna. Metoda ta polega na określeniu, a następnie usunięciu z macierzy, widm X tej 
części informacji, która jest ortogonalna do Y (tj. nie jest skorelowana z Y). Celem pracy jest 
zilustrowanie moŜliwości metody OSC, w zastosowaniu do widm śruty rzepakowej zarejestro-
wanych metodą NIR, poprzez porównanie wyników otrzymanych przy zastosowaniu metody PLS 
dla danych oryginalnych oraz danych po korekcji metodą MSC (multiplicative scatter correction) 
oraz OSC. Otrzymane wyniki pozwalają stwierdzić, Ŝe metoda OSC upraszcza model kalibracyjny, 
a gdy jest stosowana do widm po wcześniejszej korekcji MSC obserwuje się w pewnych 
przypadkach równieŜ poprawę statystycznych parametrów charakteryzujących model. 

S łowa kluczowe: chemometria, NIRS (spektroskopia bliskiej podczerwieni), śruta rzepakowa 


